<iframe src="https://www.googletagmanager.com/ns.html?id=GTM-KVGHS6G" height="0" width="0" style="display:none;visibility:hidden"></iframe>

CodeSignal数据相关面试真题

职位分类
全部
数据相关
计算机科学
人工智能
产品经理
BQ
面试题
全部(8)
SQL(0)
Coding(2)
ML basics(6)
Stats(0)
Product Case(0)
高频题(0)
Other(0)
全部(8)
SQL(0)
Coding(2)
ML basics(6)
Stats(0)
Product Case(0)
高频题(0)
Other(0)
1.Implement Decision Tree from Scratch
2.Implement Bagging from Scratch
3.Calculate MLP Output
4.Decision Tree Analysis
5.GBM vs Random Forest
6.Reason for Training Loss Increase
7.Explain Ensemble Learning
8.Calculate Recall and FPR to Find Suitable Confusion Matrix
1. Implement Decision Tree from Scratch
Write code to implement a decision tree from scratch.
2. Implement Bagging from Scratch
Write code to implement bagging from scratch, including functions for bootstrap, predict, and fit.
3. Calculate MLP Output
Given a Multilayer Perceptron (MLP) with specific parameters, calculate its output.
4. Decision Tree Analysis
Discuss the concept of a decision tree and how it is used in machine learning.
5. GBM vs Random Forest
Compare Gradient Boosting Machines (GBM) and Random Forests in terms of their differences and when to use each.