Roblox计算机科学面试真题

职位分类
全部
数据相关
计算机科学
人工智能
产品经理
BQ
面试题
全部(16)
OOD(1)
Algorithm(11)
System Design(4)
高频题(0)
Math(0)
全部(16)
OOD(1)
Algorithm(11)
System Design(4)
高频题(0)
Math(0)
1.leetcode1419
2.设计user favorite./unfavorite games
3.最长连续相同character
4.Random Weighted Index Picker
5.Text Justification Algorithm
6.设计HashMap
7.Regular Expression Matching with Dot and Asterisk Wildcards
8.设计waiting room
9.collect good endings
10.Random string generator
11.User online time statistics
12.Game room match
13.Subarray Removal
14.Optimize Performance for Tree Comparison
15.Determine if Two Tree Structures are Similar
16.Determine the Playback Mode of a Music Playlist
1. leetcode1419
leetcode1419
2. 设计user favorite./unfavorite games
需要支持几种queries,包括user>favorite games,(user,item)->favorited?,以及item->#of favorites.
3. 最长连续相同character
给一个小写字母字符串,返回最长连续相同character+长度,如果长度相同,取在字符串中出
现晚的
input: "aabbaaabbb"
output: "b3"
解释:"aa""bb""aaa""bbb"都是连续相同,先选长的"aaa"和"bbb",其中选出现晚的"bbb",输出"b3"
4. Random Weighted Index Picker
You are given a 0-indexed array of positive integers w where w[i] describes the weight of the ith index.

You need to implement the function pickIndex(), which randomly picks an index in the range [0, w.length - 1] (inclusive) and returns it. The probability of picking an index i is w[i] / sum(w).

  • For example, if w = [1, 3], the probability of picking index 0 is 1 / (1 + 3) = 0.25 (i.e., 25%), and the probability of picking index 1 is 3 / (1 + 3) = 0.75 (i.e., 75%).
 

Example 1:

Input
["Solution","pickIndex"]
[[[1]],[]]
Output
[null,0]

Explanation
Solution solution = new Solution([1]);
solution.pickIndex(); // return 0. The only option is to return 0 since there is only one element in w.

Example 2:

Input
["Solution","pickIndex","pickIndex","pickIndex","pickIndex","pickIndex"]
[[[1,3]],[],[],[],[],[]]
Output
[null,1,1,1,1,0]

Explanation
Solution solution = new Solution([1, 3]);
solution.pickIndex(); // return 1. It is returning the second element (index = 1) that has a probability of 3/4.
solution.pickIndex(); // return 1
solution.pickIndex(); // return 1
solution.pickIndex(); // return 1
solution.pickIndex(); // return 0. It is returning the first element (index = 0) that has a probability of 1/4.

Since this is a randomization problem, multiple answers are allowed.
All of the following outputs can be considered correct:
[null,1,1,1,1,0]
[null,1,1,1,1,1]
[null,1,1,1,0,0]
[null,1,1,1,0,1]
[null,1,0,1,0,0]
......
and so on.

 

Constraints:

  • 1 <= w.length <= 104
  • 1 <= w[i] <= 105
  • pickIndex will be called at most 104 times.
5. Text Justification Algorithm
Given an array of strings words and a width maxWidth, format the text such that each line has exactly maxWidth characters and is fully (left and right) justified.

You should pack your words in a greedy approach; that is, pack as many words as you can in each line. Pad extra spaces ' ' when necessary so that each line has exactly maxWidth characters.

Extra spaces between words should be distributed as evenly as possible. If the number of spaces on a line does not divide evenly between words, the empty slots on the left will be assigned more spaces than the slots on the right.

For the last line of text, it should be left-justified, and no extra space is inserted between words.

Note:

  • A word is defined as a character sequence consisting of non-space characters only.
  • Each word's length is guaranteed to be greater than 0 and not exceed maxWidth.
  • The input array words contains at least one word.
 

Example 1:

Input: words = ["This", "is", "an", "example", "of", "text", "justification."], maxWidth = 16
Output:
[
   "This    is    an",
   "example  of text",
   "justification.  "
]
Example 2:

Input: words = ["What","must","be","acknowledgment","shall","be"], maxWidth = 16
Output:
[
  "What   must   be",
  "acknowledgment  ",
  "shall be        "
]
Explanation: Note that the last line is "shall be    " instead of "shall     be", because the last line must be left-justified instead of fully-justified.
Note that the second line is also left-justified because it contains only one word.
Example 3:

Input: words = ["Science","is","what","we","understand","well","enough","to","explain","to","a","computer.","Art","is","everything","else","we","do"], maxWidth = 20
Output:
[
  "Science  is  what we",
  "understand      well",
  "enough to explain to",
  "a  computer.  Art is",
  "everything  else  we",
  "do                  "
]
 

Constraints:

  • 1 <= words.length <= 300
  • 1 <= words[i].length <= 20
  • words[i] consists of only English letters and symbols.
  • 1 <= maxWidth <= 100
  • words[i].length <= maxWidth